selected distances and angles in Table 3.* A *SCHAKAL* (Keller, 1988) plot of the molecule is shown in Fig. 1, and a stereoscopic view in Fig. 2.

Related literature. The structure of the title compound has been determined as one of a series of studies of complexes of thallium(III) halides with O-donor ligands (Bermejo, Castiñeiras, Gayoso, Hiller, Englert & Strähle, 1984; Hiller, García-Fernández, Bermejo & Castaño, 1986; Hiller, Castiñeiras, García-Fernández, Bermejo, Bravo & Sanchez, 1988; Castiñeiras, Hiller, Strähle, Bermejo & García-Vázquez, 1991), and is isotypic with TlBr₃(tppo)₂ (Jeffs, Small & Worrall, 1984), TlBrI₂(tppo)₂ (Castiñeiras, Hiller, Strähle, Bermejo & Gayoso, 1986), TlBr₂I(tppo)₂ (Castiñeiras, Hiller, Bermejo & Gayoso, 1986) and TlBrClI(tppo)₂ (Bermejo, Fernández, Gayoso, Castiñeiras, Hiller & Strähle, 1988).

References

- BERMEJO, M. R., CASTIÑEIRAS, A., GAYOSO, M., HILLER, W., ENGLERT, U. & STRÄHLE, J. (1984). Z. Naturforsch. Teil B, 39, 1159–1161.
- BERMEJO, M. R., FERNÁNDEZ, A., GAYOSO, M., CASTIÑEIRAS, A., HILLER, W. & STRÄHLE, J. (1988). Polyhedron, 7, 2561– 2567.
- CASTIÑEIRAS, A., HILLER, W., BERMEJO, M. R. & GAYOSO, M. (1986). Acta Cryst. C42, 1289–1297.
- CASTIÑEIRAS, A., HILLER, W., STRÄHLE, J., BERMEJO, M. R. & GARCÍA-VÁZQUEZ, J. A. (1991). J. Crystallogr. Spectrosc. Res. 21, 93–96.
- CASTIÑEIRAS, A., HILLER, W., STRÄHLE, J., BERMEJO, M. R. & GAYOSO, M. (1986). An. Quim. B82, 282-286.
- FRENZ, B. A. (1978). The Enraf-Nonius CAD-4 SDP A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, edited by H. SCHENK, R. OLTHOF-HAZEKAMP, H. VAN KONINGSVELD & G. C. BASSI, pp. 64-71. Delft Univ. Press.
- HILLER, W., CASTIÑEIRAS, A., GARCÍA-FERNÁNDEZ, M. E., BERMEIO, M. R., BRAVO, J. & SANCHEZ, A. (1988). Z. Naturforsch. Teil B, 43, 132–133.
- HILLER, W, GARCÍA-FERNÁNDEZ, M. E., BERMEJO, M. R. & CASTAÑO, M. V. (1986). Acta Cryst. C42, 60-62.
- JEFFS, S. E., SMALL, R. W. H. & WORRALL, I. J. (1984). Acta Cryst. C40, 65-67.
- KELLER, E. (1988). SCHAKAL. Univ. of Freiburg, Germany.
- SHELDRICK, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
- WALKER, N. & STUART, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1991). C47, 1740-1742

Structure du (Méthyl-4 pipérazinyl-1)-10 Pyrido[4,3-b][1,4]benzothiazépine

PAR L. DUPONT ET O. DIDEBERG

Laboratoire de Cristallographie, Institut de Physique B5, Université de Liège, Sart Tilman, B-4000 Liège, Belgique

ET J. F. LIÉGEOIS ET J. DELARGE

Laboratoire de Chimie Pharmaceutique, Institut de Pharmacie F1, Université de Liège, rue Fusch, 3-5, B-4000 Liège, Belgique

(Reçu le 10 janvier 1991; accepté le 21 janvier 1991)

Abstract. $C_{17}H_{18}N_4S$, $M_r = 310.4$, monoclinic, $P2_1/n$, a = 9.171 (3), b = 9.426 (3), c = 18.476 (5) Å, $\beta =$ V = 1595.9 (1) Å³, 92·20 (3)°, Z = 4, $D_r =$ 1.292 Mg m⁻³, m.p. 416–417 K, λ (Mo $K\bar{\alpha}$) = $0.7107 \text{ Å}, \mu = 0.164 \text{ mm}^{-1}, F(000) = 660, T =$ 294 (1) K, R = 0.067 for 2314 independent reflections. The thiazepine ring is in a boat conformation while the piperazine ring is in the normal chair conformation. The dihedral angle between the two aromatic rings is 110.5 (1)°. The distances between the N(methyl) atom and the centres of the two aromatic rings are 6.056 (4) and 7.726 (4) Å, respectively. There are no hydrogen bonds.

Partie expérimentale. Cristal du composé (1) incolore $0,4 \times 0,4 \times 0,2$ mm obtenu par cristallisation dans un mélange méthanol(50% en volume)-acétone. Diffractomètre Siemens.

© 1991 International Union of Crystallography

^{*} Lists of structure factors, H-atom positions, bond distances and angles, torsion angles, least-squares planes and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54025 (36 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Tableau 1. Coordonnées atomiques relatives (× 104)et facteurs de température équivalents avec les écarts-
type

$B_{\rm \acute{eq}} = (8\pi^2/3)\sum_i\sum_j U_{ij} a_i^*a_j^*a_j a_j.$

	x	v	Ζ	$B_{ico}(\text{\AA}^2)$
Cl	12322 (4)	2637 (4)	9267 (2)	4,40 (10)
C2	12191 (4)	3356 (4)	8618 (2)	4,57 (11)
C3	11439 (4)	2749 (4)	8033 (2)	4,23 (10)
C4	10836 (4)	1399 (3)	8099 (2)	3,22 (8)
S5	9859 (1)	636 (1)	7350(1)	4,21 (2)
C6	8136 (4)	542 (3)	7752 (2)	3,31 (8)
C7	6935 (4)	1228 (4)	7433 (2)	4,47 (10)
C8	5603 (4)	1090 (4)	7734 (2)	5,03 (12)
N9	5368 (3)	307 (4)	8324 (2)	4,92 (9)
C10	6536 (4)	- 346 (4)	8621 (2)	4,12 (10)
C11	7955 (4)	- 261 (3)	8378 (2)	3,13 (8)
N12	9001 (3)	-1129 (3)	8716 (1)	3,16 (7)
C13	10350 (4)	- 793 (3)	8845 (2)	2,88 (8)
C14	10997 (3)	649 (3)	8748 (2)	2,86 (7)
C15	11728 (4)	1301 (4)	9336 (2)	3,58 (9)
N16	11235 (3)	-1764 (3)	9193 (2)	3,36 (7)
C17	10631 (4)	- 3100 (4)	9436 (2)	3,90 (9)
C18	11439 (4)	- 3552 (4)	10125 (2)	3,94 (9)
N19	12992 (3)	- 3716 (3)	10017 (2)	3,81 (8)
C20	13584 (4)	-2368 (4)	9774 (2)	4,33 (10)
C21	12807 (4)	- 1865 (4)	9083 (2)	3,76 (9)
C22	13740 (5)	-4195 (5)	10686 (2)	5.22 (12)

 Tableau 2. Distances (Å) et angles des liaisons (°) avec
 les écarts-type

C2C1	1,379 (5)	N12-C11	1,391 (4)
C15-C1	1,380 (5)	C13—N12	1,291 (4)
C3C2	1,383 (5)	C14-C13	1,496 (4)
C4C3	1,395 (5)	N16-C13	1,366 (4)
\$5-C4	1,772 (3)	C15-C14	1,397 (4)
C14-C4	1,395 (4)	C17—N16	1,455 (4)
C6S5	1,773 (3)	C21—N16	1,466 (4)
C7C6	1,388 (5)	C18—C17	1,509 (4)
C11-C6	1,398 (4)	N19-C18	1,454 (4)
C8—C7	1,368 (6)	C20—N19	1,460 (4)
N9	1,340 (5)	C22—N19	1,461 (4)
C10-N9	1,335 (4)	C21-C20	1,514 (5)
C11-C10	1,396 (5)		
C15-C1-C2	120,5 (3)	C14C13N12	125,6 (3)
C3-C2-C1	120,0 (3)	N16-C13-N12	118,1 (3)
C4-C3-C2	119,7 (3)	N16C13C14	115,7 (3)
S5C4C3	119,5 (3)	C13C14C4	122,3 (3)
C14C4C3	120,6 (3)	C15C14C4	118,5 (3)
C14-C4-S5	119,9 (2)	C15-C14-C13	119,1 (3)
C6-S5-C4	97,2 (1)	C14-C15-C1	120,6 (3)
C7—C6—S5	120,3 (3)	C17—N16—C13	119,9 (3)
CII-C6-S5	120,6 (3)	C21-N16-C13	123,2 (3)
C11-C6-C7	119,1 (3)	C21-N16-C17	112,0 (3)
C8—C7—C6	119,3 (3)	C18—C17—N16	109,0 (3)
N9	123,8 (4)	N19-C18-C17	111,4 (3)
C10-N9-C8	115,9 (3)	C20—N19—C18	109,1 (3)
C11-C10-N9	125,8 (3)	C22—N19—C18	110,4 (3)
C10-C11-C6	116,1 (3)	C22—N19—C20	111,1 (3)
N12-C11-C6	126,1 (3)	C21—C20—N19	111,3 (3
N12-C11-C10	117,2 (3)	C20C21N16	109,8 (3)
C13-N12-C11	125,4 (3)		

Paramètres de la maille déterminés à partir de 25 réflexions telles que $10,0 \le \theta \le 15,0^\circ$. Balayage ω , $3,0 \le 2\theta \le 55,0^\circ$, $-11 \le h \le 11$, $0 \le k \le 12$, $0 \le l \le 18$. Réflexions de contrôle de l'intensité: $5705 \le F_o(\overline{3}13) \le 6085$, $3415 \le F_o(040) \le 3609$. 4599 réflexions mesurées, 3449 réflexions uniques ($R_{int} = 0,02$). Corrections de Lorentz, de polarisation, de décroissance et d'absorption par méthode semi-empirique (North, Phillips & Mathews, 1968). Facteurs de transmission minimum et maximum: 0,88 et 0,92. Structure déterminée par méthode directe avec MULTAN88 (Debaerdemaeker, Germain, Main, Tate & Woolfson, 1988). Affinement des paramètres de position et des facteurs de température anisotrope des atomes C, N et S, basé sur les F (matrice entière) avec SHELX76 (Sheldrick, 1976). Facteurs de diffusion sont ceux de SHELX. Les H placés suivant une géométrie standard. Facteur de température B global affiné pour les H = 5,6 (2) Å², sauf ceux du méthyl dont le *B* global affiné = 6,8 (6) Å². Facteur *R* final = 0,067 pour 2314 réflexions observées $[I > 2,5\sigma(I)]$. wR = 0.062 où $w = 1/(\sigma_F^2 + 0.0002F^2)$. Δ/σ des paramètres finals $\leq 0,08$. Limites des $\Delta \rho$ dans la carte de Fourier-différence finale: -0,32 et 0,27 e Å⁻³. Les paramètres atomiques sont donnés dans le Tableau 1.* La liste des distances et des angles des

* Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope, des coordonnées des atomes H et des paramètres des plans moyens ont été déposées au dépôt d'archives de la British Library Document Supply Centre (Supplementary Publication No. SUP 53938: 15 pp.). On peut en obtenir des copies en s'adressant à: The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. Vue en perspective de la molécule et numerotation des atomes.

Fig. 2. Vue stéréoscopique de la structure suivant Ox.

(Dupont.

liaisons se trouve dans le Tableau 2. La Fig. 1 montre une vue en perspective du composé avec la numérotation atomique. La Fig. 2 représente la structure cristalline.

Littérature associée. La structure du (méthyl-4 pipér-

azinyl-1)-10 pyrido[4,3-b][1,4]benzothiazépine a été

réalisée dans le cadre de notre étude sur les récep-

teurs à dopamine. Voir par exemple la structure du

(méthyl-1 pipérazinyl-4)-5 pyrido[2,3-b][1,5]benzothiazépine (Sbit, Dupont, Dideberg, Liégeois &

Delarge, 1988), la structure de la clothiapine (Sbit,

Dupont, Dideberg, Liégeois & Delarge, 1987) et la

structure du maléate de méthyl-1 (pyrido[2,3-f][1,5]-

Dideberg, Liégeois & Delarge, 1987). Des analogues

hétérocycliques originaux sont en voie d'expérimen-

 $1H^+$ -pipérazinium

Les auteurs remercient M. M. Vermeire pour l'assistance technique et le FNRS pour le crédit alloué au programme de recherche dont ce travail constitue une partie.

References

- DEBAERDEMAEKER, T., GERMAIN, G., MAIN, P., TATE, C. & WOOLFSON, M. M. (1988). MULTAN88. A System of Computer Programs for the Automatic Solution of Crystal Structures for X-ray Diffraction Data. Univ. de York, Angleterre, et de Louvain-la-Neuve, Belgique.
- DUPONT, L., DIDEBERG, O., LIÉGEOIS, J. F. & DELARGE, J. (1987). Acta Cryst. C43, 716-718.
- NORTH, A. C. T., PHILLIPS, D. C. & MATHEWS, F. S. (1968). Acta Cryst. A24, 351-359.
- SBIT, M., DUPONT, L., DIDEBERG, O., LIÉGEOIS, J. F. & DELARGE, J. (1987). Acta Cryst. C43, 720-722.
- SBIT, M., DUPONT, L., DIDEBERG, O., LIÉGEOIS, J. F. & DELARGE, J. (1988). Acta Cryst. C44, 319–321.
- SHELDRICK, G. M. (1976). SHELX76. Programme pour la détermination des structures cristallines. Univ. de Cambridge, Angleterre.

Acta Cryst. (1991). C47, 1742-1744

benzoxazépinyl-5)

tation.

Structure of 6-Oxo-1,6-dihydro-3,4'-bipyridine-5-carbonitrile Hydrogen Bromide

By VIVIAN CODY AND ANDRZEJ WOJTCZAK[†]

Medical Foundation of Buffalo, Inc., 73 High St, Buffalo, NY 14203, USA

(Received 25 October 1990; accepted 2 January 1991)

5-Cyano-6-oxo-1,6-dihydro-3,4'-bipyri-Abstract. dinium bromide, $C_{11}H_8N_3O^+Br^-$, $M_r = 278.11$, triclinic, $P\overline{1}$, a = 7.827 (2), b = 9.796 (2), c =15.548 (4) Å, $\alpha = 76.53$ (2), $\beta = 75.40$ (2), 74.36 (2)°, V = 1093.4 (4) Å³, Z = 4, 1.689 Mg m⁻³, λ (Mo K α) = 0.71073 Å, $\gamma =$ $D_r =$ $\mu =$ 3.70 mm^{-1} , F(000) = 552, T = 293 K, R = 0.084 for 3989 observed reflections. The bipyridinium ions are planar, the C(2)—C(1)—C(1')—C(2') torsion angles being -3.3(10) and $2.2(11)^{\circ}$ for molecules (1) and (2), respectively. The symmetry-independent bipyridinium ions are assembled in separate chains by hydrogen-bonding Br bridges [respective distances: $Br(1) \cdots N(3)$ 3.227 (6); $Br(1) \cdots N(4')$ 3.374 (6); $Br(2) \cdots N(3^*) = 3.263(5); Br(2) \cdots N(4'^*) = 3.540(7) Å$ and by forming N···O hydrogen bonds between pyridinium NH groups and keto O atoms, the $N(4')\cdots O(4)$ and $N(4'*)\cdots O(4')$ distances being 2.835 (7) and 2.706 (7) Å, respectively. These chains are connected by the series of stacking interactions with an average C···C distance of 3.5 Å.

tion; cell parameters determined from 25 reflections $21.99 < 2\overline{\theta} < 29.58^{\circ}$; Syntex P3 diffractometer, Nb filter, Mo K α radiation, $\lambda = 0.71073$ Å; $\omega - 2\theta$ scan; 5044 independent reflections $4 < 2\theta < 55^{\circ}$ ($0 < h < \theta$ 10, -11 < k < 11, -19 < l < 19) measured for a 0.38 $\times 0.35 \times 0.10$ mm rectangular crystal; six standards measured every 138 reflections revealed no significant intensity variation, no absorption or extinction corrections; 3989 observed reflections $[I > 3\sigma(I)]$; direct methods used MULTAN78 (Main, Hull, Lessinger, Germain, Declercq & Woolfson, 1978) and NQEST (De Titta, Edmonds, Langs & Hauptman, 1975), $\sum w(|F_o| - |F_c|)^2$ minimized with full-matrix least squares, $w = 1/\sigma^2(F)$. H-atom positions from geometry, two H atoms from pyridinium ions missing in the structure, only non-H atom parameters refined (anisotropically). Final $|\Delta/\sigma| < 0.01$, $\Delta\rho_{\text{max}} = 2.61$ and $\Delta\rho_{\text{min}} = -1.65 \text{ e} \text{ Å}^{-3}$, R = 0.084, wR = 0.078and S = 3.676. The large R value is a result of the crystal thickness and the absorption effects of Br⁻. Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV). Final

Experimental. Samples were obtained from Sterling-

Winthrop. Crystals from the H₂O/EtOH/HBr solu-

3\$03.00 © 1991 International Union of Crystallography

[†] Permanent address: Institute of Chemistry, N. Copernicus University, Gagarina 7, 87-100 Toruń, Poland.